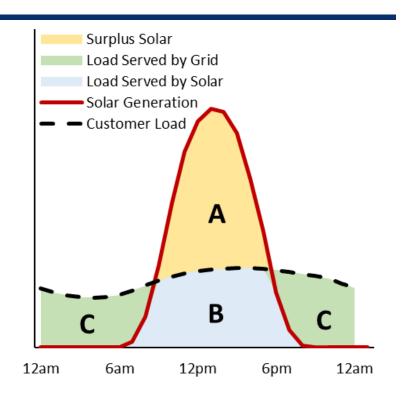


Private vs. public value of U.S. residential battery storage operated for solar self-consumption

Sydney Forrester, Galen Barbose, and Chandler Miller

Lawrence Berkeley National Laboratory

Public Webinar


August 4, 2022

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231.

Context and Motivation

- Net billing has emerged as the de facto successor to net metering in many jurisdictions
- Its defining feature is an asymmetric pricing structure: solar generation can offset contemporaneous load at the full retail rate (Area B), but any surplus solar exported to the grid (Area A) is compensated at a specified grid export rate, typically less than the retail rate
- Creates an incentive to use battery storage to arbitrage between retail and grid-export prices, by shifting surplus solar generation to meet residual load (Area C)

Questions:

- What benefit does this arbitrage behavior provide to the electric system?
- And how does that compare to the private benefit received by the solar+storage customer?

Key Findings

- 1. The bill savings from arbitrage between retail and wholesale prices typically is not enough, on its own, to justify storage investments at current costs
- 2. When net billing is coupled with flat retail and grid export rates, the resulting storage dispatch profile yields virtually no value to the system
- 3. Introducing *highly* time differentiated rates can *partially* mitigate this deficiency, particularly if customers are allowed and incentivized to discharge to the grid during the highest-value peak hours
- 4. Net billing continues to lead to inefficient outcomes even in high-solar penetration markets where wholesale prices resemble the "duck curve", and the suboptimality can become even more severe in some cases

Organization

- Data and Methods
- Core Results
- High Solar Futures
- Decomposing the Value Gap
- Conclusions

Data and Methods

Data and Methods (Core Analysis)*

Data and Methods

Core Results

High Solar Futures

Decomposing the Value Ga

Conclusions

Load Data: Metered hourly loads from ~1800 residential customers without PV or storage, across 6 utility service territories, from 2012-2013

Solar Profiles: Simulated using NREL's System Advisor Model for the same locations and time period as the load data

Market Data: Day-ahead energy market prices and balancing authority system loads for the same locations and time period as the customer load data Key Assumptions: (a) PV & storage sizing, (b) tariff design, (c) grid charging/discharging rules

Storage Dispatch Model:

Dispatch storage to maximize private value to the customer

Outputs: Energy + peak value of storage and customer bill savings, in units of \$ per kWh of storage capacity per year; also grid export levels

*Several supplemental analyses were performed with other datasets, as described elsewhere

Side Bar: A word on PV and storage sizing in this analysis

Data and Methods

Core Results

High Solar Futures

Decomposing the Value Ga

- Throughout the analysis, we refer to PV and storage sizes in normalized units
- PV sizing
 - Normalized to the fraction of annual customer consumption
 - We explore multiple PV sizes, but most of the analysis focuses on size **1.0** where the PV system generates 100% of annual customer load (~ 4-8 kW)
- Storage sizing
 - Denominated as a fraction of average daily PV generation
 - We explore results across storage sizes (varying kWh capacity, and assuming 2-hour duration)
 - We explore multiple battery sizes, but most of the analysis focuses on size 0.5, where storage energy capacity is equal to 50% of average daily PV generation (~10-15 kWh with PV size 1.0)

Load Data: Additional Details

Data and Methods

Core Results

High Solar Futures

Decomposing the Value G

- Primary analysis relies on metered load data from six utilities, collected through the Smart Grid Investment Grant (SGIG) Program
 - Detroit Edison (DTE)
 - Green Mountain Power (GMP)
 - Lakeland Electric (LE)
 - Nevada Energy (NVE)
 - Sacramento Municipal Utilities District (SMUD)
 - Vermont Electric Cooperative (VEC)
- Secondary/supplemental parts of the analysis rely on Simulated Load and Pecan Street data.

Core Results

Some Initial Assumptions (to be relaxed later)

Data and Methods

Core Results

High Solar Futures

Decomposing the Value Ga

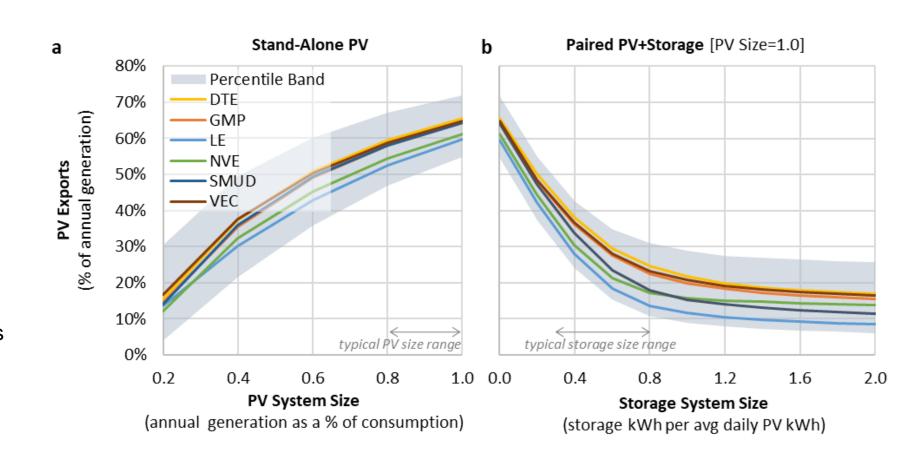
Conclusions

- 1. Net billing asymmetry
- 2. Flat retail prices for both consumption and exports
- 3. Storage only charges from solar, and only discharges to load
 - Incentivized by net billing asymmetry
 - Other grid charging/discharging constraints: ITC, interconnection rules, tariff provisions, etc.

These assumptions are inter-related

- Time-varying rates impact results most when storage can freely charge from / discharge to the grid
- Charging/discharging constraints matter only if there are time-varying price signals

Solar PV Grid Exports with and without Battery Storage


Data and Methods

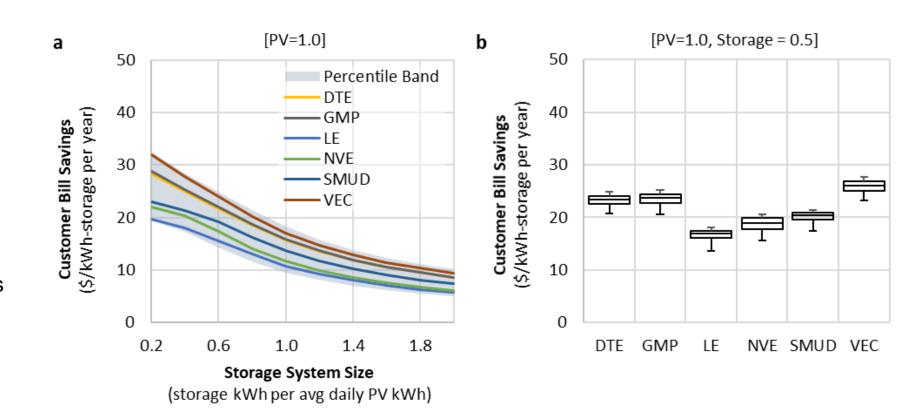
Core Results

High Solar Futures

Decomposing the Value Ga

- Grid exports increase with PV system size
- Typically-sized standalone PV exports 47-72% of annual PV generation across customers
 - Typically-sized storage could reduce grid exports to 11-31%
 - Larger batteries reduce exports with diminishing returns (less net load to offset)

Bill Savings During Self-Consumption


Data and Methods

Core Results

High Solar Futures

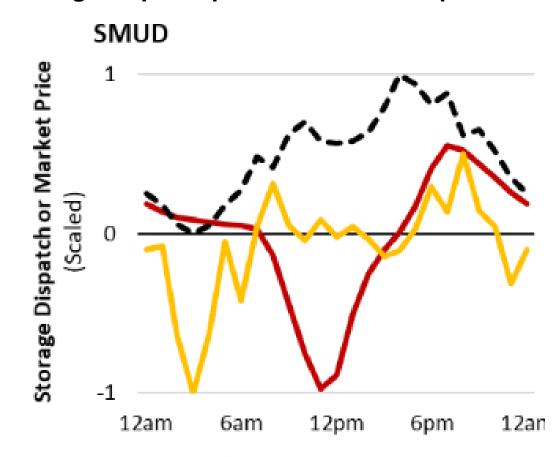
Decomposing the Value Gr

- Bill savings from solar arbitrage diminish with larger storage
- Bill savings do not cover upfront cost of battery
 - For a typical system configuration (Panel b), annual bill savings range \$17-26/kWh-storage across utility medians
 - Compare to current residential storage cost of \$700-1300/kWh-storage (payback period of >20 years)

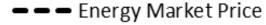
Alignment of Storage Dispatch and Energy Market Prices

Data and Methods

Core Results


High Solar Futures

Decomposing the Value Ga

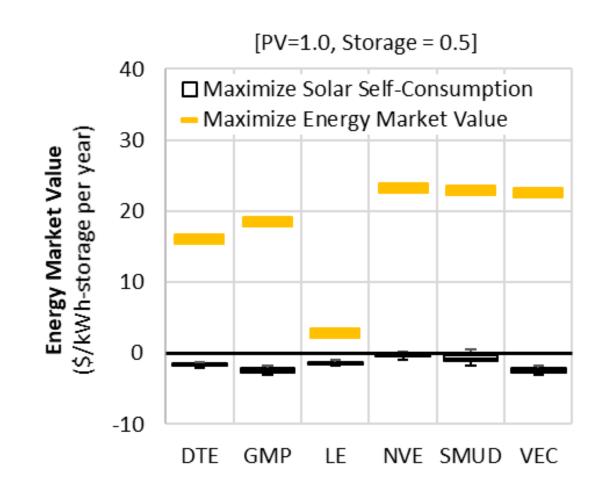

Conclusions

Annual average dispatch profiles and market prices

- Both charging and discharging are misaligned with energy market prices
 - Charging during daytime hours, when prices are relatively high
 - Discharging begins in the evening to align with prices, but continues through the night, when prices are low

Dispatch to Maximize Solar Self-Consumption
Dispatch to Maximize Energy Market Value

Energy Market Value of Storage for Self-Consumption


Data and Methods

Core Results

High Solar Futures

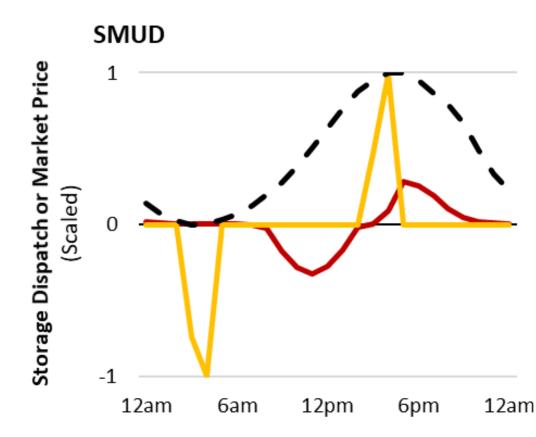
Decomposing the Value Ga

- Energy market value of storage under base case is effectively zero due to temporal misalignment
- In comparison, storage to maximize energy market value would yield a value of \$16-23/kWh-storage annually across all utilities except LE (not in/near organized market)

Alignment of Storage Dispatch and System Peak Demand

Data and Methods

Core Results


High Solar Futures

Decomposing the Value Ga

Conclusions

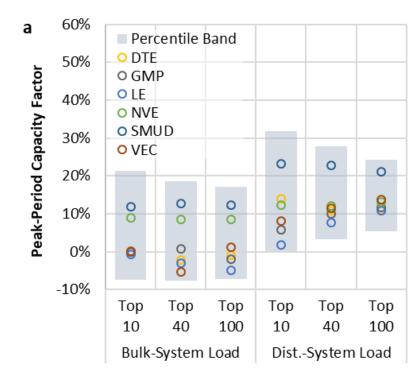
Storage dispatch profiles on system peak-day

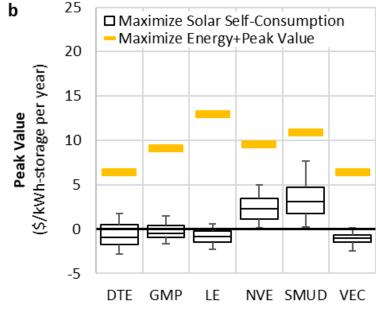
- Storage operated solely for self-consumption sits largely idle on peak days
 - Increased customer load results in less solar available to charge storage for dispatch during peak
- The (little) storage dispatch that occurs is not well-aligned with peak hours...

Dispatch to Maximize Solar Self-ConsumptionDispatch to Maximize Energy+Peak Value

■ ■ Bulk Power System Load

Peak Value of Storage to Maximize Solar Self-Consumption


Data and Methods


Core Results

High Solar Futures

Decomposing the Value Ga

- ...This is true across
 other definitions of "peak
 value", e.g., generation
 and T&D capacity
 - Storage operated for solar self-consumption has low peak coincidence (panel a), though somewhat higher relative to distribution peak
- At a marginal peak value of \$50/kW-year over 40 peak hours:
 - Best case (yellow lines in panel b): \$6-13/kWh-storage

Assessing the Persistence of the Value Gap

How does this analysis hold up in high-RE futures?

Data and Methods

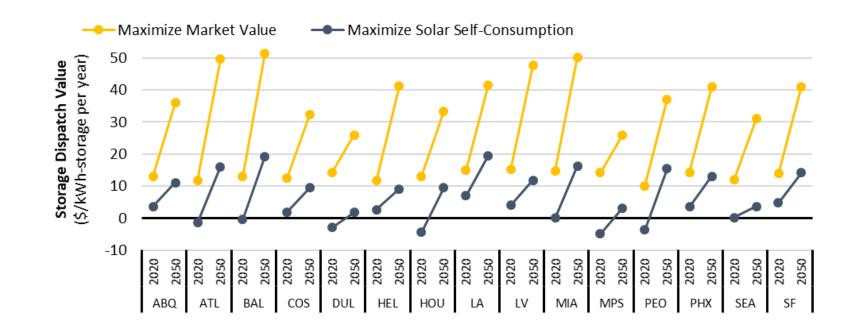
Core Results

High Solar Futures

Decomposing the Value Ga

- Increasing renewable energy (RE) generation → "duck curve" wholesale energy market prices (low in the middle of the day and highest in early evening hours)
 - Should align better with the dispatch profile of storage base usage (solar self-consumption)
- Is this the case?
- We re-ran our analysis scenarios using projected, high RE scenario thru 2050
 - 2020 Standard Scenarios, Low RE Cost Scenario (combined solar+wind generation reaches 60% of total U.S. electricity generation) for 15 locations across US

Storage Dispatch Value in a High-RE Future


Data and Methods

Core Results

High Solar Futures

Decomposing the Value Ga

- Value of storage for solar self-consumption rises by avg. of \$10/kWh-storage, over 15 locations
- Yet, the market-based dispatch value rises by avg. of \$26/kWh, widening the value gap
 - Prices become more volatile over time as RE increases; increased capacity value
- Storage for solar selfconsumption remains unable to capture value during spike in prices

Decomposing the Value Gap

Scenario Design to Decompose Contributing Factors

Data and Methods

Core Results

High Solar Futures

Decomposing the Value G

Conclusions

- The "value gap" between net billing with flat rates and full market-optimized dispatch is due to a combination of factors: asymmetric pricing, flat rates, and restrictions on grid charging/discharging
- To disentangle the relative effects of each, we compute storage dispatch value over a structured sequence of scenarios that move incrementally from our two bookend cases:

Scenario 1

Net billing with flat rates

Scenario 2

Replace flat prices with hourly prices

Retain fixed pricing differential for exports vs. consumption

No grid charging or discharging allowed

Scenario 3

+Allow grid charging

Scenario 4

+Allow limited grid discharging

Hourly grid discharge from PV+storage capped at PV nameplate kW (DC-coupled)

Scenario 5

+Allow unlimited grid discharging

Hourly grid discharge from storage limited only to storage kW capacity (AC-coupled)

Scenario 6

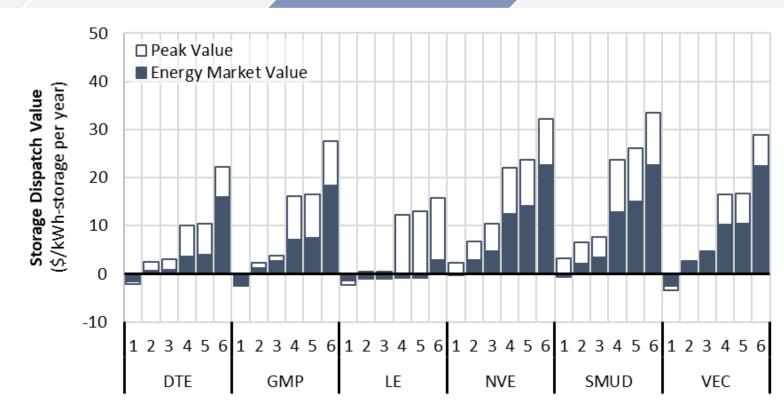
+Symmetric price for exports and consumption

Full market-based dispatch (as if it were front-ofmeter, standalone storage)

Storage Value across Tariff Scenarios

Data and Methods

Core Results


High Solar Futures

Decomposing the Value G

Conclusions

Stepwise...

- ...Time-invariant pricing impact in isolation is quite small
- ...Constraints on grid charging have little additional effect
- ...Constraints on grid discharging have larger additional effects
 - Allows peak value capture
- ...Asymmetric pricing is responsible for 30-50% of overall value gap
 - Mostly energy value impact

Notes: Plotted values are medians across all customers of each utility.

Scenario 1: Net billing with flat prices

Scenario 2: Net billing with hourly prices, no grid charging or discharging

Scenario 3: Net billing with hourly prices, grid charging allowed, no grid discharging

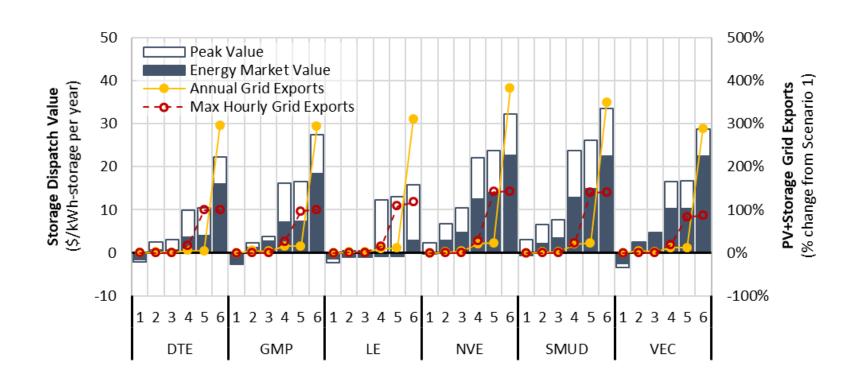
Scenario 4: Net billing with hourly prices, grid charging allowed, partial grid discharging allowed

Scenario 5: Net billing with hourly prices, grid charging allowed, full grid discharging allowed

Scenario 6: Market-based dispatch with hourly prices, grid charging and discharging allowed

Grid Exports across Tariff Scenarios

Data and Methods


Core Results

High Solar Futures

Decomposing the Value G

Conclusions

- Grid export metrics considered:
 - Annual (solar self-consumption)
 - Hourly max. (local grid stress)
- Limited grid discharge (Scen.
 4) avoids notable increases in max. grid exports while still capturing 50% 70% of potential value and without degrading self consumption levels
- Unlimited grid discharge (Scen.
 5) doubles max. grid exports
 vs. no grid discharge
- Eliminating asymmetry (Scen.
 6) results in 4-5 times more annual grid exports (greater than standalone PV)

Notes: Plotted values are medians across all customers of each utility.

Scenario 1: Net billing with flat prices

Scenario 2: Net billing with hourly prices, no grid charging or discharging

Scenario 3: Net billing with hourly prices, grid charging allowed, no grid discharging

Scenario 4: Net billing with hourly prices, grid charging allowed, partial grid discharging allowed

Scenario 5: Net billing with hourly prices, grid charging allowed, full grid discharging allowed

Scenario 6: Market-based dispatch with hourly prices, grid charging and discharging allowed

Conclusions

Data and Methods

Core Results

High Solar Futures

Decomposing the Value G>

- Net billing results in suboptimal storage dispatch, which may...
 - Create deadweight loss: large customer outlays for storage equipment that provides little societal benefit
 - Undermine the intent of NEM reforms: Using storage to move solar grid exports back behind the meter maintains the same sales/revenue erosion issues as with NEM
 - Perpetuate inequities: insofar as those customers who receive the greatest benefit under net billing are those that can afford to co-install storage with solar
- These issues can be partially mitigated through tariff designs or programs that incentivize customers to discharge to the grid during the highest value hours
 - For example, TOU and CPP rates, and demand response programs
 - Requires consideration of, and potential tradeoffs with, local distribution network impacts

Contacts

Galen Barbose: glbarbose@lbl.gov, (510) 495-2593

For more information

Download publications from the Electricity Markets & Policy Group: https://emp.lbl.gov/publications

Sign up for our email list: https://emp.lbl.gov/mailing-list

Follow the Electricity Markets & Policy Group on Twitter: @BerkeleyLabEMP

Acknowledgements

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231.

